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Abstract

The spinning and rolling motion of a circular disk under the influence of gravity is inves-
tigated. The mass distribution of the disk is unbalanced; that is, its centre of mass does not
coincide with the geometric centre of the disk. This non-integrable, nonholonomic system
combines the motion of a symmetric disk with the rolling of an unbalanced spherical ball.
The Hamilton-Pontryagin variational approach to nonholonomic systems is used to formu-
late the equations of motion. The solutions of these equations are investigated in a variety
of situations.
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1 Introduction

The work for this project was inspired by seeing the motion of the physics toy called Euler’s disk
[11]. This solid metal disk exhibits a similar type of motion to when you drop a coin, except it
lasts for 2 minutes! As the disk slowly loses energy it leans more towards the horizontal, rolls
slower and passes from rolling to “wobbling” at a definite frequency. As the disk leans closer
to the flat, it wobbles faster. That is, the frequency of the wobbling and the phase speed of its
point of contact increases dramatically, although the disk itself is hardly moving. The motion
ends in a climax as the vibration frequency of the wobbling increases to a high rate and then
suddenly stops.

Further inspiration was obtained from a ring which had a cutout, so consequently its mass
was unbalanced. When that was spun, as the ring approached the flat it seemed to draw out a
spiral and exhibited other motions not seen in Euler’s disk. I had to find out the mathematics
behind it! The ring with a cutout is an example of a spinning disk with an unbalanced mass
distribution. To this end we purchased an Euler’s disk and took it to a machine shop to have
an off-center hole put in it, hence making it unbalanced. An image of this disk can be seen on
the front cover.

The problem of the symmetric spinning disk has been studied in many papers (such as
[2, 4, 7, 17, 9]) although all except one [9] use Euler angles, which leads to a lot of messy al-
gebra. We follow the Geometric mechanics based approach outlined in [9]. This provides an
elegant approach that allows us to write down the equations of motion in a single line. There
are also close links between the unbalanced disk and an unbalanced ball rolling on the plane, as
studied by Chaplygin and others[15, 9, 8]. The unbalanced disk provides an excellent example
of a nonholonomic system and we include a brief overview concerning some of the implications
of a system being nonholonomic.

In this report, we

• derive the equation of motion for the unbalanced disk

• compare equations with those for the unbalanced ball and the balanced disk

• investigate 2D dynamics of the unbalanced disk in the vertical plane

• investigate rolling on a curved surface

• examine 3D motions of the unbalanced disk with constant potential energy

• look at the motion of spinning cylinders

The main content of this report is

• Section 2 formulates the equations of motion for nonholonomically constrained motion
using Hamilton-Pontryagin variational principle in the framework of Geometric Mechanics.

• Section 3 describes conservation of energy for rolling without slipping of the unbalanced
disk.

• Section 4 compares the unbalanced disk to the rolling ball and balanced Euler disk.
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• Section 5 discusses the effects of nonholonomic constraints on conservation laws and
Noether’s theorem.

• Section 6 investigates vertical rolling. This includes rolling on a curved surface and coupled
rollers.

• Section 7 constrains the rolling of an unbalanced disk to have constant potential energy.
This includes using penalty to implement the constraint.

• Section 8 deduces how the wobbling frequency of the symmetric disk increases as the angle
of the disk to the horizontal decreases.

• Section 9 expands the model to spinning cylinders.

• Section 10 discusses the numerical integration of the equations of motion.

2 Formulating Equations of Motion

The formulation of the equations of motion follows the method used in Geometric Mechanics II:
Rotating, Translating and Rolling[9], which derives equations of motion for a rolling ball and a
symmetric disk.

We consider a flat, heavy disk of mass m and radius r rolling on a horizontal surface without
slipping. The disk we consider has an unbalanced mass distribution, that is, its center of mass
does not necessarily coincide with the center of the disk. We choose a right-handed system of
unit vectors (E1,E2,E3) which represent the reference frame of the disk. These are chosen such
that the origin of the axis lies at the centre of symmetry of the disk, E3 is perpendicular to the
disk and the disk lies in the (E1,E2) plane. It is easiest to choose the (E1,E2,E3) so that the
inertia tensor I becomes diagonal in these coordinates. This helps to simplify the equations of
motion.

We also need a set of spatial vectors (e1, e2, e3). These are chosen such that e3 points
upwards perpendicular to the horizontal surface. Since we are considering motion under gravity,
this force will be in the negative e3 direction, pulling the disk down towards the plane.

In most cases it is convenient to choose the reference frame to coincide with the spatial frame,
that is, when the disk lies flat. However, in certain cases, like in the section on 2D rolling, it is
easier to choose the reference frame to be when the disk is on it’s side.

The motion of the disk can be expressed in terms of the position and orientation of the disk.
This corresponds to the action of SE(3) ∼= SO(3)sR3. SO(3) consists of rotations and defines
the orientation of the disk. The elements of R3 represent translations to determine the position
of the disk in space. s represents a semi-direct product.

Remark A semi-direct product group G = HsN is such that N is a normal subgroup, H is a
subgroup and any element of G can be expressed uniquely as the product of an element N and
an element of H[31]. In this case, R3 is the normal subgroup of SE(3). An element of SE(3)
can be written as (R, v) where R ∈ SO(3) and v ∈ R3. This is similar to the direct product of
groups, however, with a semi-direct product, the group multiplication is different:

(R, v)(R̃, ṽ) = (RR̃,Rṽ + v)
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Figure 2.1: A circular disk is spinning and rolling under the action of
gravity. σ is the spatial vector from the point of contact to the center
of mass. σc is the spatial vector from the point of contact to the center
of the disk. lAχ is the spatial vector from the center of the disk to the
center of mass.

The inverse is then defined by
(R, v)−1 = (R−1,−R−1v)

Recall that a subgroup N of G is normal if for any n ∈ N and any g ∈ G then gng−1 ∈ N [30].
R3 as a subgroup of SE(3) is represented by elements of the form (I, u) ∈ SE(3) where I is the
3× 3 identity matrix. Then normality of R3 ⊂ SE(3) is easy to check using the definition:

(R, v)(I, u)(R, v)−1 = (R, v)(I, u)(R−1,−R−1v)

= (RIR−1, v +Ru−RIR−1v)

= (I,Ru) ∈ R3 ⊂ SE(3)

We recognise here the AD-operation of Lie groups AD : G × G → G. So that any normal
subgroup is closed under the AD operation AD : G × N → N . For more information on
adjoint actions see [9]. For a more detailed description of semi-direct product Lie algebras with
applications see [10], [16] and references therein.

�
The orientation of the disk at time t relative to the reference configuration is given by

(A(t)E1, A(t)E2, A(t)E3) where A = A(t) ∈ SO(3). Now that we have our coordinate systems
set up, we need to define some key vectors (see figure 2.1):

• χ will be the body unit vector pointing from the center of symmetry to the center of mass.
The center of mass is a distance l from the center of symmetry.

• σ(t) will be the spatial vector from the point of contact C to the centre of mass.
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• σc(t) will be the spatial vector from C to the centre of symmetry of the disk. This leads
to the relation:

σ(t) = σc(t) + lA(t)χ

Note we have A(t)χ since χ is in the body and A(t) takes us into the spatial frame.

• s(t) will be the vector in the body frame corresponding to σ(t) in the spatial frame. That
is, s(t) is the body vector from the point of contact to the centre of symmetry. We have
a similar definition for sc(t), from C to the center of symmetry.

• Since the orientation matrix A(t) moves us between the spatial and body frames we get
the relations:

σ(t) = A(t)s(t) =⇒ s(t) = A−1(t)σ(t) = sc(t) + lχ

σc(t) = A(t)sc(t) =⇒ sc(t) = A−1(t)σc(t)

Remark I will often switch between vector notation (in bold) and non-vector notation. This is
just for ease of notation, especially when it comes to group actions and taking variations in the
Hamilton-Pontryagin principle. In some cases this is a trivial mapping: for vectors s↔ s but in
some cases this is less trivial. This less trivial mapping is for elements of the Lie Algebra so(3).
These are anti-symmetric matrices and so can be expressed in vector notation via the hat-map:

Ω =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 ⇐⇒ Ω = (Ω1,Ω2,Ω3)

then the product of Ω ∈ so(3) and s ∈ R3 maps over by

Ωs ⇐⇒ Ω× s

This is called the hat-map because the matrix form of elements of the Lie Algebra are often
denoted with a hat (such as Ω̂). Since so(3) is a Lie algebra we can define the adjoint action
ad : so(3)× so(3)→ so(3). This is the Lie Poisson bracket which defines the product structure
on the vector space of anti-symmetric matrices. In the case of a matrix Lie algebra it is simply
the matrix commutator. This commutator maps to a cross product under the hat-map.

adΩ Ξ = [Ω,Ξ] = ΩΞ− ΞΩ ⇐⇒ adΩ Ξ = Ω×Ξ

�

2.1 Rolling Constraint

What do we mean by rolling? Rolling of the disk means that the point of contact of the disk to
the plane is not sliding, hence it can also be referred to as a no-slip condition. An equivalent
definition is that the motion of any point in the disk must be obtained by a rotation about the
point of contact. It must be if the point of contact is not sliding. The only point in the disk
that is significant to us is the centre of mass, so we concentrate on that. In the spatial frame,
the angular frequency is ω(t) = ȦA−1(t) ∈ so(3).
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Let x(t) be the spatial vector pointing from the origin to the centre of mass, then the rolling
constraint says that the velocity of the centre of mass is given by a rotation of the spatial vector
σ(t). So the rolling constraint can be written as:

ẋ(t) = ω(t)σ(t) = ω(t)× σ(t) (2.1)

Note the use of the hat-map. This is the constraint in the spatial frame. It is useful to transform
this into the body frame. Let Y = A−1ẋ(t) be the corresponding vector in the body. Then the
rolling constraint in the body can be written as:

Y = A−1ȦA−1σ(t) = A−1Ȧs = Ωs = Ω× s (2.2)

where Ω = A−1Ȧ ∈ so(3) is the angular frequency in the body.

Remark This rolling constraint is known as a nonholonomic constraint. In simple terms this
means that it cannot be expressed in the form df = 0 for some function f [5]. An example
of a holonomic constraint is |x|2 = 1 since this can be expressed as d |x|2 = 0. Nonholonomic
constraints are trickier to handle than holonomic constraints. We shall discuss this in more
detail later.

�

2.2 Lagrangian

The Lagrangian is the kinetic energy T minus the potential energy V . The kinetic energy (KE)
consists of 2 parts, the rotational KE and the translational KE:

T =
1

2
〈Ω, IΩ〉︸ ︷︷ ︸

rotational

+
m

2
|ẋ|2︸ ︷︷ ︸

kinetic

=
1

2
〈Ω, IΩ〉+

m

2
|Y |2 (2.3)

The potential energy is due to gravity and depends on the height of the centre of mass z(t)
above the plane on which the disk is spinning or rolling. The potential energy is therefore given
by V = mgz(t), where

z(t) = 〈σ(t), e3〉 = 〈As(t), e3〉 =
〈
s,A−1e3

〉
= 〈s,Γ〉 (2.4)

where Γ = A−1e3 is the vertical spatial axis as seen in the body. Since e3 is a unit vector and
A is orthogonal, |Γ|2 = |e3|2 = 1.

We can now write down the Lagrangian for the system:

L(Ω, Y,Γ) =
1

2
〈Ω, IΩ〉+

m

2
|Y |2 −mg 〈s(Γ),Γ〉 (2.5)

In vector notation, obtained via the hat-map, the Lagrangian is

L(Ω,Y ,Γ) =
1

2
Ω · IΩ +

m

2
|Y |2 −mgs(Γ) · Γ (2.6)

8



J. Jachnik Spinning and Rolling of an Unbalanced Disk CID: 00512067

2.3 Some Extra Ingredients

It will help us later on if we have some extra tools/expressions to help with our calculations.
First we notice (see figure 2.1) that σc is perpendicular to both AE3 and the vector e3×AE3[9].
σc has length r so we can write

σc = r
AE3 × (e3 ×AE3)

|AE3 × (e3 ×AE3|
= r

AE3 × (e3 ×AE3)√
1− (e3 ·AE3)2

(2.7)

Transforming this into the body (to get sc) and using the fact that the rotation of a cross
product is the cross product of the rotated vectors we get:

sc = A−1σc =
r√

1− (e3 ·AE3)2
E3 ×A−1(e3 ×AE3)

=
r√

1− (Γ ·E3)2
E3 × (A−1e3 ×E3)

=
r√

1− (Γ ·E3)2
E3 × (Γ×E3)

=
r√

1− (Γ ·E3)2

(
Γ− (Γ ·E3)E3

)
(2.8)

It is then some simple algebra to calculate ṡ:

ṡ = ṡc =
r√

1− (Γ ·E3)2
Γ̇− r(

1− (Γ ·E3)2
)3 (Γ̇ ·E3

)(
E3 − (Γ ·E3)Γ

)
(2.9)

where we have used the fact that χ is constant. Here we notice that ṡ ·E3 = 0.
In some cases we need to calculate derivatives like ∂f(s)

∂Γ (for instance, the derivative of the
Lagrangian). For this we need to use the chain rule:

∂f(s)

∂Γ
=
∂f(s)

∂sj

∂sj
∂Γ

So it makes sense to calculate the following

ηj
∂sj
∂Γ

=
r√

1− (Γ ·E3)2
η +

(Γ ·E3)(η · Γ)E3 − (η ·E3)E3(
1− (Γ ·E3)2

)3/2 (2.10)

This equation gives us the relation Γ · δs = 0 since

Γ · δs = Γj
∂sj
∂Γ
· δΓ =

r√
1− (Γ ·E3)2

Γ · δΓ = 0 (2.11)

where we use the fact that |Γ|2 = 1 which implies that δ |Γ|2 = 2Γ · δΓ = 0. The relation
Γ · δs = 0 will be very useful when it comes to taking derivatives of the Lagrangian.

2.4 Variational Principle

We now have the reduced Lagrangian and the rolling constraint distribution written in body
coordinates. The standard Hamilton’s principle used in Lagrangian mechanics is not applicable
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to nonholonomic systems. Therefore, to get the equations of motion, we apply the Hamilton-
Pontryagin variational principle which was first outlined in [3] and later applied to rolling balls
and symmetric disks in [9]. You may notice that Marsden and Bou-Rabee’s paper [3] was in
fact published after the release of Prof. Darryl Holm’s book: [9]. This is due to Prof. Holm’s
close contact with Jerrold Marsden and Nawaf Bou-Rabee. Prof. Holm was able to see and
implement these methods in his book before the official publishing of the Hamilton-Pontryagin
paper.

We need to be careful with how we treat the nonholonomic constraint. With this kind of
constraint we do not get the correct answer if we substitute in the constraint before taking
variations. To get the correct answer we must be careful to take variations which are restricted
to the constraint distribution D defined by the rolling constraint:

D =
{

(Ω,Y ,Γ)
∣∣ Y = Ω× s(Γ)

}
(2.12)

We write down the left-trivialised action to be

S =

∫ b

a
L(Ω, Y,Γ) +

〈
Π, A−1Ȧ− Ω

〉
+
〈
κ,A−1e3 − Γ

〉
+
〈
λ,A−1ẋ− Y

〉
dt (2.13)

Then the equations of motion arise from the left-trivialised Hamilton-Pontryagin principle[3]

0 = δS = δ

∫ b

a
L(Ω, Y,Γ) +

〈
Π, A−1Ȧ− Ω

〉
+
〈
κ,A−1e3 − Γ

〉
+
〈
λ,A−1ẋ− Y

〉
dt (2.14)

2.5 Calculating Variations

Before we can take variations of the action defined above we need to calculate the variations of
each of the variables in the Lagrangian.

δΩ = δ(A−1Ȧ) = A−1δȦ−A−1δAA−1Ȧ (2.15)

We then define the independent variation η = A−1δA ∈ so(3) to give

η̇ = A−1δȦ−A−1ȦA−1δA

=⇒ δΩ = δ(A−1Ȧ) = η̇ + adΩ η (2.16)

where the adjoint action ad : so(3)× so(3)→ so(3) is the matrix commutator as defined earlier.

δΓ = δ(A−1e3) = −A−1δAA−1e3 = −ηΓ (2.17)

We now look at the variations of Y . This is where we must be careful since Y is constrained
by Y = Ωs. We must take variations which stay within the constraint distribution. We use the
relation:

Y = A−1ẋ = A−1Ȧs =⇒ A−1δx = (A−1δA)s = ηs (2.18)

10



J. Jachnik Spinning and Rolling of an Unbalanced Disk CID: 00512067

so that

δY = δ(A−1ẋ) = A−1δẋ− ηA−1ẋ

=
d

dt
(A−1δx)− d

dt
(A−1)δx− ηΩs

=
d

dt
(ηs) + Ωηs− ηΩs

=
d

dt
(ηs) + (adΩ η)s (2.19)

(2.20)

Before we can calculate variations of the action functional we must first define some operators.
We define the coadjoint operator ad∗ : so(3) × so(3)∗ → so(3)∗ where so(3)∗ is the dual to the
Lie algebra so(3). We define it using the pairing[9]:

〈ad∗Ω µ, η〉 = 〈µ, adΩ η〉 (2.21)

We also define the diamond operator, �, using the pairing[9]:

〈κ � Γ, η〉 = 〈κ,−ηΓ〉 (2.22)

We now have all we need to take variations of the action functional and obtain our equations of
motion:

0 = δS =

∫ b

a

〈
∂L
∂Ω
−Π, δΩ

〉
+

〈
∂L
∂Γ
− κ, δΓ

〉
+

〈
∂L
∂Y
− λ, δY

〉
+
〈
Π, δ(A−1Ȧ)

〉
+
〈
κ, δ(A−1e3)

〉
+
〈
λ, δ(A−1ẋ)

〉
dt (2.23)

The first three terms define the Lagrange multipliers Π, κ, λ whilst, after some manipulation,
the final three terms will give the equations of motion:∫ b

a

〈
Π, δ(A−1Ȧ)

〉
+
〈
κ, δ(A−1e3)

〉
+
〈
λ, δ(A−1ẋ)

〉
dt

=

∫ b

a
〈Π, η̇ + adΩ η〉+ 〈κ,−ηΓ〉+

〈
λ,

d

dt
(ηs) + (adΩ η)s

〉
dt

=

∫ b

a

〈
−Π̇ + ad∗Ω Π + κ � Γ + λ̇ � s− ad∗Ω(λ � s), η

〉
dt+

[
〈Π− λ � s, η〉

]b
a

= −
∫ b

a

〈(
d

dt
− ad∗Ω

)
(Π− λ � s)− κ � Γ + λ � ṡ, η

〉
dt+

[
〈Π− λ � s, η〉

]b
a

We assume the variations vanish at the endpoints so that we obtain the equations of motion:(
d

dt
− ad∗Ω

)
(Π− λ � s) = κ � Γ− λ � ṡ (2.24)

where

Π =
∂L
∂Ω

, κ =
∂L
∂Γ

, λ =
∂L
∂Y

(2.25)
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We also have an auxiliary equation for the evolution of Γ. This can be computed directly:

Γ̇ =
d

dt
A−1e3 = −A−1ȦA−1e3 = −ΩΓ = −Ω× Γ (2.26)

It is easiest to work in vector form since we are very familiar with vectors. To this end we rewrite
the equations of motion in vector form. We use that hat-map and recall that the adjoint operator
becomes the matrix cross product so that the coadjoint operator ad∗ becomes the negative cross
product:

〈ad∗Ω Π,η〉 = 〈Π, adΩ η〉
= Π ·Ω× η
= −Ω×Π · η
= 〈−Ω×Π,η〉

The diamond operator also becomes the cross product since, via the hat-map, ηΓ→ η × Γ:

〈s � Γ, η〉 = 〈s,−ηΓ〉
= −s · η × Γ

= s× Γ · η
= 〈s× Γ,η〉

Therefore, the equations of motion written in vector form are:(
d

dt
+ Ω×

)
(Π− λ× s) = κ× Γ− λ× ṡ

Γ̇ = −Ω× Γ

Given the Lagrangian in vector form:

L(Ω,Y ,Γ) =
1

2
Ω · IΩ +

m

2
|Y |2 −mgs(Γ) · Γ

We can now compute Π,Y ,Γ and use these to get the full equation of motion:

Π =
∂L
∂Ω

= IΩ, κ =
∂L
∂Γ

= −mgs(Γ), λ =
∂L
∂Y

= mY

(
d

dt
+ Ω×

)(
IΩ−m(Ω× s)× s

)
= −mgs(Γ)× Γ−m(Ω× s)× ṡ (2.27)

Γ̇ = −Ω× Γ

where we have used the relation Γ · δs = 0 in the calculation of ∂L/∂Γ. Here we have also
substituted in the rolling constraint Y = Ω × s. This equation looks exactly the same as the
equation for the symmetric disk in [9] but we must remember that our definition of s is different.
In this equation s goes to the center of mass and not the center of symmetry (although these
do coincide in the symmetric case).

12
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2.6 Reconstructing the Full Solution

When we solve the system above we get Ω(t) and Γ(t). We note that in essence we have
reduced the problem as defined on SE(3) to a problem on so(3). However, due to the rolling
constraint, given the orientation of the disk we can reconstruct the full motion of the disk in
SE(3) = SO(3)sR3. We have the reconstruction equation for A:

Ȧ = AΩ (2.28)

Which will give us A(t) ∈ SO(3). To find the position of the point of contact X(t) we note that

X(t) = x(t)− σ(t)

= x(t)−A(t)s(t) (2.29)

where x(t) is the position of the center of mass. The motion of the center of mass is determined
by the rolling constraint

ẋ = ω × σ
= ωσ

= ȦA−1As

= Ȧs (2.30)

It is now simple to write down the motion equation for the point of contact:

Ẋ = ẋ− Ȧs−Aṡ
= −Aṡ (2.31)

Obviously, the point of contact must stay in the plane so we perform a quick check:

Ẋ · e3 = −Aṡ · e3

= −ṡ ·A−1e3

= −ṡ · Γ
= 0

So the point of contact will never leave the plane, as required.
Given these equations we can now solve to find the full motion for a given set of initial

conditions. Numerical integration of these equations will be discussed in section 10.

2.7 Constraint Before Variations

As stated earlier, one of the difficulties of nonholonomic constraints is that if we substitute in the
constraint and then take variations we get a different answer than if we take variations and then
substitute in the constraint. To really emphasise this point, in this section I will take variations
after substituting in the constraint to see what we get.

Suppose we take the constrained Lagrangian:

Lc(Ω,Γ) =
1

2
〈Ω, IΩ〉+

m

2
|Ωs(Γ)|2 −mg 〈s(Γ),Γ〉 (2.32)

13
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Then our Hamilton-Pontryagin action functional is

S =

∫ b

a
Lc(Ω,Γ) +

〈
Π, A−1Ȧ− Ω

〉
+
〈
κ,A−1e3 − Γ

〉
dt (2.33)

Stationarity of this action functional gives the equations of motion:

dΠ

dt
− ad∗Ω Π = κ � Γ (2.34)

where Π = ∂Lc/∂Ω and κ = ∂Lc/∂Γ.
If we now translate back into vector notation and calculate the derivatives we get:

Π =
∂Lc
∂Ω

= IΩ +ms× (Ω× s) (2.35)

So the left hand side of the equation of motion remains the same. However, when we calculate
the right hand side of the equation we get a big mess which is not the same as the equations of
motion we previously calculated:

κ =
∂Lc
∂Γ

= m
[
Ω× (s×Ω)

]
i

∂si
∂Γ
−mgs (2.36)

Making use of equation (2.10) and then taking the cross product of the above equation with
Γ and we do not get the same equations as when we use the constraint after variations. This
phenomenon can be likened to a property of standard calculus: We must take derivatives and
then evaluate, not evaluate and then take derivatives!

Remark We can compare this to the planar pendulum written in polar coordinates. This has
the constraint ṙ = 0. The unconstrained Lagrangian is

L(r, ṙ, θ, θ̇) =
m

2

(
ṙ2 + r2θ̇2

)
+mgr cos θ

Which gives the equations of motion (from Hamilton’s principle):

mr̈ = mrθ̇2 +mg cos θ,
d

dt
mr2θ̇ = −mgr sin θ

Substituting in the constraint now (after taking variations) gives us the equation of motion

mr2θ̈ = −mgr sin θ

If we now look at the Euler-Lagrange equations for the constrained Lagrangian:

Lc(θ, θ̇) =
m

2
r2θ̇2 +mgr cos θ

We get the exact same equation of motion. Therefore, this holonomic system is unaffected if we
apply the constraint before or after taking variations.

�
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2.8 Unconstrained Lagrangian

To emphasise the importance of staying on the constraint distribution when taking variations
we can look at what happens when we don’t! If we don’t stay on the constraint distribution the
variation of Y changes:

δ
(
A−1ẋ

)
= −A−1δAA−1ẋ+

d

dt
(A−1δx) +A−1ȦA−1δx

= −ηA−1ẋ+ µ̇+ Ωµ (2.37)

where µ = A−1δx is another variation independent of η = A−1δA. This is the key difference.
When we stick to the constraint distribution, µ is not independent of η. This mistake leads to
the equations of motion:

λ̇ = λ � Ω

Γ̇ = Γ � Ω (2.38)

Π̇− ad∗Ω Π− λ � Y − κ � Γ = 0

but λ = ∂L/∂Y = mY so that λ � Y = 0. This gives us a semi-decoupled system. We can
solve for Ω and Γ without knowing Y . If we try to implement the rolling constraint now, it will
not work. Additionally, the auxiliary equation for Y gives |Y | = const. This tells us that the
translational kinetic energy is constant, which is not true in general.

3 Conservation of Energy

The Lagrangian has no explicit time dependence and therefore the disk has an energy which is
conserved. This is given by

E(Ω,Γ) =
1

2
〈Ω, IΩ〉+

m

2
|Ω× s|2 +mg 〈s,Γ〉 (3.1)

which is simply the sum of kinetic and potential energies. This can be expressed in the form of
a Hamiltonian via the Legendre transformation of the constrained Lagrangian:

E(Ω,Γ) =

〈
∂Lc
∂Ω

,Ω

〉
− Lc(Ω,Γ) (3.2)

where Lc is the constrained Lagrangian given by

Lc(Ω,Γ) =
1

2
〈Ω, IΩ〉+

m

2
|Ω× s|2 −mg 〈s,Γ〉 (3.3)

that is, the constrained Lagrangian is simply obtained by substituting in the rolling constraint
given by Y = Ω× s.

3.1 Proof of Conservation of Energy

The easiest way to prove the conservation of Energy for our system is to use the Hamiltonian
form, which tells us

dE

dt
=

〈
d

dt

∂Lc
∂Ω

,Ω

〉
−
〈
∂Lc
∂Γ

, Γ̇

〉
(3.4)
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So lets look at this component-wise:

d

dt

∂Lc
∂Ω

=
d

dt

(
∂L
∂Ω

+
∂

∂Ω

(m
2
|Ω× s|2

))
=

d

dt
(Π− λ× s) (3.5)

To find this time derivative we use the motion equation given by the nonholonomic Hamilton-
Pontryagin principle (

d

dt
+ Ω×

)
(Π− λ× s) = κ× Γ− λ× ṡ (3.6)

So that when we take the inner product with Ω we get〈
d

dt

∂Lc
∂Ω

,Ω

〉
= 〈κ× Γ,Ω〉 − 〈λ× ṡ,Ω〉 (3.7)

The remaining term to look at is〈
∂Lc
∂Γ

, Γ̇

〉
= Γ̇ · ∂

∂Γ

(m
2
|Ω× s|2

)
−mgs · Γ̇

=
ds

dt
· ∂
∂s

(m
2
|Ω× s|2

)
+mgs ·Ω× Γ

= −Ω× λ · ṡ− κ ·Ω× Γ (3.8)

And this is equal to (3.7) so that they cancel out to give dE
dt = 0.

4 Rolling Ball and Euler’s Disk

There are two specialised cases of our system that are two of the widest-studied nonholonomic
systems. These are the rolling ball and Euler’s disk. The first is a ball rolling with an unbalanced
mass distribution and the latter is the spinning and rolling of a flat disk with a radially symmetric
mass distribution.

The unbalanced rolling ball may not seem like a specialised version of our system but it is
in fact the same system with the additional constraint that the height of the centre of the disk
(which is now a ball) is constant (that is, sc = rΓ). This is a simple holonomic constraint which
we can substitute into our original Lagrangian to give the new Lagrangian:

Lball =
1

2
Ω · IΩ +

m

2
|Y |2 −mglχ · Γ−mgr |Γ|2 (4.1)

Since |Γ|2 = 1, the last term is a constant and therefore has no effect on the motion and we
may conclude that this Lagrangian is equivalent to the Lagrangian of the rolling ball as defined
in [9]. The unbalanced rolling ball is studied extensively in [15]. It is shown that the moment
of inertia has a big effect on the motion. If there is a slight asymmetry (I1 6= I2) then, as the
ball rocks back and forth, it precesses and after a while the direction of the precession changes!
This paper is very readable and I recommend it if you are interested in rolling bodies.

The simplification to the symmetric disk is as easy as setting l = 0. This yields the new
Lagrangian:

Leuler =
1

2
Ω · IΩ +

m

2
|Y |2 −mgsc · Γ (4.2)
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There have been many papers written about the spinning symmetric disk (such as [2, 7, 17, 4]).
Many of them look at the physics of the toy Euler’s Disk. There is a list of publications on the
Euler’s Disk website[11] and there is also some information on the Wikipedia page[26]. Many
publications focus on how the energy is dissipated and the finite time singularity. Moffatt[18]
thought that the reason the disk lost energy and increased frequency was due to viscous proper-
ties of the trapped air. Experiments were done spinning disks in a vacuum[22] and also spinning
rings which would not trap air. The motion was seen to be generally unaffected leading to the
conclusion that Moffatt’s theory was inconsistent. The loss of energy was thought to be due to
slipping however in the early stages of the motion (≥ 10◦ from the horizontal) it was shown that
the no-slip condition is satisfied so that energy dissipation must be due to rolling friction[19]
and the sound and vibration generated. The base on which the toy “Euler’s Disk” sits is in fact
very smooth and slightly elastic so the vibration is reduced to a minimum and the disk can roll
for the optimum amount of time. The spin time is noticeably reduced when the disk is placed
on a rougher surface like a tabletop. The base, on which the Euler’s disk is set to spin, is also
slightly concave. This design was implemented to make the disk want to spin in the center of
the base. [13] investigates whether this concavity actually helps increase the spin time of the
disk. Spinning of a disk inside a sphere is also further analysed in [14].

5 Constraints, Symmetries and Conservation Laws

In 1915 (published in 1918[28]) Emmy Noether, described by Albert Einstein as the most im-
portant woman in the history of mathematics[25], proved one of most important theorems in
the history of mechanical systems. Noether’s theorem describes the link between symmetries
of a system and conserved quantities. From Noether’s theorem we can link time independent
Lagrangians to conservation of energy, translation invariant Lagrangians to conservation of mo-
mentum and so on.

5.1 Conservation Laws for Chaplygin’s Ball and Euler’s Disk

As mentioned in section 4, the asymmetric rolling disk can be considered as a generalisation
of a rolling ball and a rolling symmetric disk (Euler’s disk). We consider the specialised case
of an unbalanced rolling ball that is radially symmetric about χ ,the vector from the center of
the ball to the center of mass. This semi-symmetric ball will be referred to as Chaplygin’s Ball.
Due to the symmetry, its motion is invariant under rotations about the vector χ. We choose
the reference coordinates so that E3 = χ. Both Chaplygin’s ball and the symmetric Euler’s
disk exhibit a symmetry under rotations about the E3 axis. Can we find conservation laws
corresponding to this symmetry?

5.2 Jellet’s Integral

Jellet’s integral, Π · s, is a conserved quantity for Chaplygin’s ball. It appears because of the
E3 symmetry.

d

dt
(Π · s) = Π̇ · s+ Π · ṡ

= −Ω×Π · s+ Π · ṡ from equations of motion (5.1)
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Now, for Chaplygin’s ball, s = rΓ + lχ and so ṡ = −Ω× rΓ. Therefore

d

dt
(Π · s) = Π ·Ω× rΓ−Ω×Π · rΓ−Ω×Π · lχ

= lχ ·Π×Ω

= l (Π1Ω2 −Π2Ω1) since χ = E3

= 0

since for Chaplygin’s ball, I = diag(I1, I1, I3) so that Π1 = I1Ω1 and Π2 = I1Ω2 so that the
terms cancel out. What is peculiar is that this quantity is not conserved for Euler’s disk, even
though both Chaplygin’s ball and Euler’s disk have the same symmetry. This is due to the non-
holonomy of the constraint, which is discussed below. There are conservation laws for Euler’s
disk but I will not go in to them here since any reference I have found to them has been in terms
of Euler angles and this is not in keeping with the layout of this paper. There is an additional
constant of motion for Chaplygin’s ball known as the Routh constant. I have not found a way
of writing it down in anything other than Euler angles so I have omitted it. See [8] for more
information.

5.3 Nonholonomic Constraints

Nonholonomic constraints generally occur when there is a constraint on the velocities. These
constraints are characteristic of any system where rolling is involved. From a mathematical point
of view, a nonholonomic constraint is such that the constraint is not integrable. A good physical
description of a nonholonomic system is given by [29]: A nonholonomic system is such that the
state of the system depends on the path it took to get there. Another interpretation given in
[12] is that the system is allowed to move between any two given states without violating the
constraint. This is easy to describe with the rolling ball: Given the orientation of a ball, it is
possible to roll the ball away from the origin then return it to the origin in any orientation we
want, without the ball slipping or sliding. Calculations like “how to roll the ball to get a specific
orientation” are known as control theory problems. Nonholonomic control theory problems occur
regularly in the field of robot control. Robots on wheels are subject to the nonholonomic rolling
constraint and need to be controlled to reach a specific destination in a specific orientation.

Hamilton’s principle is not applicable to nonholonomic systems and so, traditionally, non-
holonomic systems have been treated with the Lagrange D’Alembert principle as in [4, 32]. This
method can be complicated to implement and the alternative Hamilton-Pontryagin approach[3]
is more efficient. It also gives us some insight into Noether’s theorem for nonholonomic con-
straints. Recall that as we were taking variations of the action we obtained:

0 = δS =

∫ b

a

〈
∂L
∂Ω
−Π, δΩ

〉
+

〈
∂L
∂Γ
− κ, δΓ

〉
+

〈
∂L
∂Y
− λ, δY

〉
−
〈(

d

dt
− ad∗Ω

)
(Π− λ � s)− κ � Γ + λ � ṡ, η

〉
dt+

[
〈Π− λ � s, η〉

]b
a

(5.2)

From regular holonomic Noether’s theorem we would expect that if some symmetry were to
leave the action invariant then we would obtain the conservation law

d

dt
〈Π− λ � s, η〉 = 0 or, in vector form,

d

dt

((
Π− λ× s

)
· η
)

= 0 (5.3)
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There must be some kind of link between this quantity and conservation laws. Chaplygin’s ball
is symmetric about the E3 axis. This E3 symmetry of the Lagrangian leads to conservation of
Jellet’s integral, Π · s. We note that this can be expressed in the form

d

dt

((
Π− λ× s

)
· s
)

= 0 (5.4)

due to anti-symmetry of the vector cross product. But why would this quantity be conserved via
symmetry about theE3 axis when it appears more like a symmetry about s? The symmetric disk
also has this E3 symmetry but Jellet’s quantity is not conserved, why is this? These questions
are difficult to answer and many people are trying to work their way towards a nonholonomic
version of Noether’s theorem. Zenkov[32] discusses (linear) conservation laws for nonholonomic
systems and shows how it is possible to derive conservation laws for the symmetric Euler’s disk.
[7] presents a Hamiltonian approach to nonholonomic constraints and defines a kind of alternative
form of Noether’s theorem, although, rather than relating a symmetry to a conservation law, it
describes, in essence, a necessary and sufficient condition for a given quantity to be conserved.

For more information, a relatively light discussion on nonholonomic constraints and how to
handle them can be found in [20, 21] or for an extensive study of nonholonomic dynamics with
symmetries, with examples, see [1].

6 2D Rocking Motion

The simplest solution to the asymmetric disk system is the 2D rocking motion where the disk is
just rolling back and forth on its edge oriented in the vertical plane. Obviously, for non-trivial
motion we require l 6= 0 so the centre of mass is not in the centre of the disk. We show that this
system reduces to a second order ODE.

We start by defining the reference configuration of the disk that defines the (E1,E2,E3)
vectors. We choose the reference configuration to be the case when the disk is standing on it’s
side with the E2 axis pointing downwards. With this reference configuration, the spatial vertical
vector is given by e3 = −E2.

The rotation of the disk is about the E3 axis so that it can be represented by an element
A(θ) ∈ SO(3) given by

A(θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (6.1)

An increase in θ corresponds to rolling from left to right (see figure 6.1). The left-invariant body
angular velocity is calculated to be

Ω = A−1Ȧ =

0 −θ̇ 0

θ̇ 0 0
0 0 0

 with vector form Ω = (0, 0, θ̇) = θ̇E3 (6.2)

We usually choose the (E1,E2,E3) coordinates so that the inertia tensor is diagonal. However,
in this case we do not need to do this. We make sure that E3 is the principal axis perpendicular
to the disk but rotate the (E1,E2) axes so that the unit vector to the centre of mass is χ = −E2.
This is an arbitrary choice for simplifying the equations. The vector χ could point anywhere
in the E1,E2 plane and this simply corresponds to a constant shift in angle θ. We can then
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AE2

AE1

lAχ

COM

σc

σ

θ

Figure 6.1: The disk is vertically oriented. θ is the angle between the
vertical and the vector from the center of mass (COM) to the center of
symmetry. An increase in θ corresponds to rolling from left to right.

easily calculate the other variables/parameters required which are Γ, s = sc+ lχ and the rolling
constraint Y = Ωs. Since the disk is circular and remains rolling on it’s side, the vector from
the point of contact to the centre of symmetry is sc = rΓ in the body.

Γ(θ) = A−1e3 =

sin θ
cos θ

0

 , s =

 r sin θ
r cos θ − l

0

 , Y = Ω× s = θ̇

l − r cos θ
r sin θ

0

 (6.3)

We now have all the ingredients required to put into the equation of motion:(
d

dt
+ Ω×

)(
IΩ +ms× (Ω× s)

)
= mgΓ× s+mṡ× (Ω× s) (6.4)

Calculating components of this equation:

IΩ = I3θ̇E3 =⇒ Ω× IΩ = 0 (6.5)

s× Y = θ̇
(
r2 sin2 θ + (r cos θ − l)2

)
E3

= θ̇
(
r2 + l2 − 2rl cos θ

)
E3

= θ̇ |s(θ)|2E3 (6.6)

Γ× s = (sin θ(r cos θ − l)− r sin θ cos θ)E3

= −l sin θE3 (6.7)

ṡ× Y = θ̇2

 r cos θ
−r sin θ

0

×
l − r cos θ

r sin θ
0

 = rlθ̇2 sin θE3 (6.8)
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So, combining these, the E1 and E2 components of (6.4) are zero. The E3 component gives us
an ODE for θ which can be written as:

d

dt

(
(I3 +m |s(θ)|2)θ̇

)
= −mgl sin θ +mrlθ̇2 sin θ (6.9)

which can be rearranged to give

θ̈ = − ml(g + rθ̇2)

I3 +m |s(θ)|2
sin θ (6.10)

where
|s(θ)|2 = r2 + l2 − 2rl cos θ (6.11)

This equation is consistent with the equations in [9],[15] where they look at the rocking of
Chaplygin’s ball in the plane, a rolling ball with I1 = I2. This is an equivalent problem.

We may compare this ODE to the equation for the simple pendulum which is

ml2θ̈ = −mlg sin(θ) (6.12)

where l is the length of the pendulum. We see that the equation for the rolling disk has a more
complex expression due to the torque introduced by the rolling constraint[9] and the dependence
of the acceleration on the velocity θ̇ not just of position. If k = r = 0 for the disk equation then
we recover the equation for the simple pendulum but these values are totally non-physical.

Let us compare the motion arising from the rocking disk to that of the simple pendulum.
Figure 6.2 shows the phase portraits for both of these systems. We see how for low energies
the disk is similar to the pendulum because they are both an approximation of simple harmonic
motion (SHM). For larger energies the acceleration of the disk is damped by inertia and so the
phase portrait starts to change shape. The figure also shows the homoclinic orbits which occur
from the unstable equilibrium when the centre of mass is directly above the centre of symmetry.

We may also look at small amplitude oscillations where θ << 1 so that we ignore higher
order terms. In this case the motion simplifies to simple harmonic motion with period ω defined
by:

ω2 =
mlg

k +m(r − l)2
(6.13)

When rolling on the horizontal plane, the path of the centre of mass draws out a Curtate
Cycloid [23]. This path can be seen in figure 6.3 and has parametric definition

x(θ) = rθ − l sin θ, y(θ) = r − l cos θ (6.14)

As in the 3D case the energy is still conserved. The energy is given by:

E(Ω,Γ) =
1

2
〈Ω, IΩ〉+

m

2
|Ω× s|2 +mg 〈s,Γ〉 (6.15)

If we substitute in the values of Ω and Γ for the 2D motion the conservation of energy equation
becomes:

E(θ, θ̇) =
1

2
I3θ̇

2 +
m

2
|s(θ)|2 θ̇2 +mg(r − l cos θ) (6.16)

We use this below to hint at a Lagrangian structure for this motion.
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(a) Rolling Disk (b) Planar Pendulum

Figure 6.2: Phase portraits for the rolling vertical disk (a) and the
planar pendulum (b). There are similarities for low energies where both
systems approximate simple harmonic motion.

Figure 6.3: When the vertical disk rolls along a horizontal plane, the
center of mass draws out a path known as a curtate cycloid.
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6.1 Rolling on a Curved Surface

What about rolling on a curved surface? This seemed like an interesting problem to pursue. It
is more complicated than it may seem because the point of contact of the disk is not necessarily
at the bottom of the disk. The potential energy will now depend on the height of the curve at
the point of contact as well as the orientation of the disk. For the disk to roll properly on the
curved surface we need to impose the condition that the radius of curvature of the surface is
always greater than the radius of the disk so that at any one time, there is only a single point
of contact.

To construct the equations of motion for this system we first note that the rolling of the disk
on a horizontal plane can be expressed as a one-dimensional system with Lagrangian

L(θ, θ̇) =
1

2
I3θ̇

2 +
1

2
m |s(θ)|2 θ̇2 +mgl cos θ (6.17)

which is simply the sum of the kinetic energies minus the potential energy. The equations of
motion are then easily derived from the standard Euler-Lagrange equations:

d

dt

∂L
∂θ̇

=
∂L
∂θ

(6.18)

Remark Earlier we mentioned that Hamilton’s principle does not apply to nonholonomic sys-
tems yet above we have just used it by saying the equations of motion come from the Euler-
Lagrange equations. This is not a mistake because the system is holonomic if we restrict to the
2D rolling motion! The easiest way to demonstrate this is by the physical definition outlined in
[12] and mentioned earlier in a discussion on nonholonomic constraints. We said that a system
is nonholonomic if we can move between any 2 states without violating the constraint. However,
for 2D rolling, if we roll the disk away from the origin and back again, it will always have the
same orientation. We cannot change the state of the system at the origin without violating the
rolling constraint! Hence the system is now holonomic and Hamilton’s principle is valid.

�
The move to a curved surface is fairly simple. It is easiest to construct the problem when

the curve is defined in parametric coordinates with parameter θ, which will be orientation of
the disk relative to the slope (see fig 6.4). We are able to do this because the disk is rolling
on the surface. The rolling constraint tells us that the distance travelled along the curve from(
x(θ0), y(θ0)

)
to
(
x(θ), y(θ)

)
is:

r(θ − θ0) =

∫ θ

θ0

√
x′(φ)2 + y′(φ) dφ

differentiate w.r.t θ
=⇒ r2 = x′(θ)2 + y′(θ)2 (6.19)

So we have a curve defined by
(
x(θ), y(θ)

)
. At any point on the curve we can find the angle of

the slope by

α(θ) = arctan

(
y′(θ)

x′(θ)

)
(6.20)

As discussed above, the ball must be able to roll on the surface with only a single point of
contact. We require that the radius of curvature of the surface is always greater that the radius
of the disk. The curvature is defined by

κ =

∣∣∣∣1r dαdθ
∣∣∣∣ (6.21)
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α

AE2

AE1COM
σc

σ

θ

Figure 6.4: The vertically oriented disk is now rolling on a curved
surface. Angle θ is measured between the normal vector to the curve and
the vector from the center of the disk to the center of mass. α is the
angle of the slope.

(a) allowed (b) disallowed

Figure 6.5: Here we see the disk rolling on a parabolic curve. The
radius of curvature is less than the radius of the disk. However when the
curve is concave, as in (a), the disk can still roll unobstructed. When
the curve is convex ,as in (b), the ball cannot roll properly since it now
has 2 points of contact with the curve.
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The radius of curvature is then κ−1 so that for the disk to be able to roll on this surface we
require

1

κ
> r =⇒

∣∣∣∣dαdθ
∣∣∣∣ < 1 (6.22)

This constraint is actually too strict since we only need the surface to have a greater radius of
curvature at points where the surface is convex (see figure 6.5). We therefore relax the constraint
to be

dα

dθ
< 1 (6.23)

where an increase in θ correspond to rolling from left to right.
The Lagrangian for the disk rolling on a slope can now be constructed. The rotational kinetic

energy depends on the angular velocity of the disk relative the the fixed vertical axis. This is
given by (θ̇ − α̇). The rotational kinetic energy can then be written down as

KErot =
1

2
I3

(
θ̇ − α̇

)2
=

1

2
I3

(
1− α′(θ)

)2
θ̇2 (6.24)

where I3 is the moment of inertia of the disk about the E3 axis perpendicular to the disk. To
write down the translational kinetic energy we must first determine the position X = (X,Y )T

of the centre of mass. Using some simple trigonometry we can write down:

X =

(
X
Y

)
=

(
x(θ)− r sinα− l sin(θ − α)
y(θ) + r cosα− l cos(θ − α)

)
(6.25)

=⇒

Ẋ =

(
Ẋ

Ẏ

)
= θ̇

(
x′(θ)− rα′(θ) cosα− l (1− α′(θ)) cos(θ − α)
y′(θ)− rα′(θ) sinα+ l (1− α′(θ)) sin(θ − α)

)
(6.26)

The translational kinetic energy is then given by

KEtrans =
m

2

∣∣∣Ẋ∣∣∣2 (6.27)

After lots of paperwork and miraculous cancellations we finally ended up at this nice result:∣∣Ẋ∣∣2 =
(
1− α′(θ)

)
|s(θ)|2 (6.28)

where we have made multiple use of the identities relating α and x′, y′ as well as the rolling
condition r2 = x′2 + y′2. As before |s(θ)|2 is the distance from the point of contact to the centre
of mass:

|s(θ)|2 = r2 + l2 − 2rl cos θ (6.29)

The potential energy is simply mg times the height of the centre of mass. This is given by
Y (θ) in (6.25). We can now write down the Lagrangian:

L(θ, θ̇) =
1

2
I3

(
1− α′(θ)

)2
θ̇2︸ ︷︷ ︸

rotational KE

+
m

2
|s(θ)|2

(
1− α′(θ)

)2
θ̇2︸ ︷︷ ︸

translational KE

−mg
(
y(θ) + r cosα− l cos(θ − α)

)︸ ︷︷ ︸
potential energy

(6.30)
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The Euler-Lagrange equations then lead to the following equation of motion:

d

dt

((
I3 +m |s(θ)|2

)(
1− α′(θ)

)2
θ̇
)

=
(
1− α′(θ)

) (
mrl

(
1− α′(θ)

)
sin θ − α′′(θ)

(
I3 +m |s(θ)|2

))
θ̇2 − V ′(θ) (6.31)

where
V ′(θ) = mg

(
y′(θ)− rα′(θ) sinα+ l

(
1− α′(θ)

)
sin(θ − α)

)
(6.32)

If l = 0 these equation simplify to(
I3 +mr2

) (
1− α′(θ)

)
θ̈ = α′′(θ)

(
1− α′(θ)

) (
I3 +mr2

)
θ̇2 −mg

(
y′(θ)− rα′(θ) sinα

)
(6.33)

As before, the Lagrangian has no explicit time dependence so there is a conserved Energy given
by:

E(θ, θ̇) =
1

2
I3

(
1−α′(θ)

)2
θ̇2 +

m

2
|s(θ)|2

(
1−α′(θ)

)2
θ̇2 +mg

(
y(θ)+ r cosα− l cos(θ−α)

)
(6.34)

One question I thought would be interesting to answer is the following: Is there a curved
surface such that rolling an unbalanced disk on that surface would give the same motion as a
pendulum? Just by looking at the equations of motion we start to think the answer is no (or is
it?). For a start there are θ̇2 terms appearing in the equation of motion which are nowhere to
be found in the pendulum. The only way to make these disappear would be to have

0 =
(
1− α′(θ)

) (
mrl

(
1− α′(θ)

)
sin θ − α′′(θ)

(
I3 +m |s(θ)|2

))
=

∂

∂θ

1

2

((
I3 +m |s(θ)|2

)(
1− α′(θ)

)2)
(6.35)

In fact this leads to the simplest form of the equations

Kθ̈ = −V ′(θ) where K =
(
I3 +m |s(θ)|2

)(
1− α′(θ)

)2
is a constant (6.36)

We can see that if l = 0 ( =⇒ |s(θ)| is constant) then taking α′(θ) =constant will satisfy this
relation. Then if V ′(θ) ∼ sin θ we could get a pendulum. We will see which curve satisfies this
later on.

6.1.1 Inclined Plane

The simplest example is to consider the symmetric disk l = 0 rolling on an inclined plane at
angle α from the horizontal (see figure 6.6). Then:

α(θ) = α (constant), x′(θ) = r cosα, y′(θ) = r sinα (6.37)

We substitute these into (6.30) to obtain the Lagrangian

L(θ, θ̇) =
1

2
I3θ̇

2 +
m

2
r2θ̇2 −mg (rθ sinα+ r cosα) (6.38)

We can now write down the equation of motion from the Euler-Lagrange equations:

θ̈ = −mgr sinα

I3 +mr2
(6.39)
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α

Figure 6.6: The symmetric disk rolls down an inclined plane at angle
α to the horizontal.

For a uniform disk, I3 = mr2

2 so we get the equation:

θ̈ = −2

3

g

r
sinα (6.40)

This is a nice simple equation which shows us that the rotation of the disk is subject to a
constant acceleration. Since θ increases as the disk rolls from left to right (up the slope) it
makes sense for the acceleration to be negative - forcing the disk down the slope.

6.2 Surface of Stationarity - Constant Potential Energy

Suppose we have an unbalanced disk (l > 0). For a given orientation of the disk there must
exist a slope such that if placed on this slope the disk will be in equilibrium/remain stationary.
So let’s set about finding this. Assume that θ̇ = 0 then find y(θ) and α(θ) such that θ̈ = 0. It
is easy to read off from equation (6.31) that we require

y′(θ)− rα′(θ) sinα+ l
(
1− α′(θ)

)
sin(θ − α) = 0 (6.41)

Note that this is equivalent to solving V ′(θ) = 0 so this in fact generates the curve of constant
potential energy. This problem on it’s own would be difficult to solve but we can use some
intuition to help us along the way. For the disk to remain stationary, there must be no overall
torque acting on the disk. Therefore we require the centre of mass to be directly above the point
of contact. The condition for this to hold is

r sinα+ l sin(θ − α) = 0 =⇒ α(θ) = arctan

(
l sin θ

l cos θ − r

)
(6.42)

Plugging this in to (6.41) gives

y′(θ) = −rl sin θ
|s(θ)|

(6.43)

where
|s(θ)|2 = r2 + l2 − 2rl cos θ (6.44)

is the length of the vector from the point of contact to the centre of mass. Now using the
definition of α(θ) in (6.20) and (6.42) we can find x′(θ) to be

x′(θ) =
r(r − l cos θ)

|s(θ)|
(6.45)
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Figure 6.7: When the ball rolls along this surface, the potential en-
ergy remains constant. The black line represents the path of the cen-
ter of mass. There is no torque acting on the disk since the center of
mass is always directly above the point of contact. Since the total energy
is conserved there is an exchange of energy between the rotational and
translational kinetic energies only.

It is a simple check to show that these satisfy the rolling condition r2 = x′(θ)2 + y′(θ)2. These
can be integrated to give the curve

(
x(θ), y(θ)

)
y(θ) = − |s(θ)| = −

√
r2 − 2rl cos θ + l2 (6.46)

x(θ) =

∫ θ r2 − rl cos θ

|s(θ)|
dθ (6.47)

where the x(θ) integral is some mess involving elliptic functions. Figure 6.7 shows the surface
defined by

(
x(θ), y(θ)

)
above. We notice similarities between this and the curtate cycloid gen-

erated by the motion of the centre of mass when rolling on a horizontal plane. There is surely
some bijective map between the two. We notice that the derivative with respect to θ of the
curve of constant potential energy is the same as the derivative of the curtate cycloid with just
a scale factor of |s(θ)|. There is clearly a very close link.

Now lets suppose that we roll the disk along the surface
(
x(θ), y(θ)

)
defined above. As

mentioned earlier, the potential energy will remain constant. Therefore, if the disk is started
rolling, it will remain rolling for all time, it cannot lose kinetic energy.

We need to check that the disk will actually be able to roll freely along the curve with only
a single point of contact. We need to check that the radius of curvature satisfies the conditions
outlined in (6.23).

dα

dθ
= − l(r cos θ − l)

|s(θ)|2
(6.48)

So we need to solve:

− λ(cos θ − λ)

λ2 + 1− 2λ cos θ
< 1 for 0 ≤ λ =

l

r
≤ 1 (6.49)

Since the denominator is positive we can multiply both sides by it then we get

−λ(cos θ − λ) < λ2 + 1− 2λ cos θ

=⇒ λ cos θ < 1

This is clearly satisfied for all 0 < λ < 1 so this disk will be able to roll on this surface without
any problems.
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l

rθ

Figure 6.8: The vertical disk is rolling in the bottom of a large circle
of radius R.

6.3 Rolling in the Bottom of a Large Circle

Suppose the surface on which the disk is rolling is the bottom of a large circle of radius R (see
figure 6.8). We require r < R for this to be physically possible. Then we can define the curve
in parametric co-ordinates with

x = R sinφ, y = R−R cosφ (6.50)

Such that (x, y) = (0, 0) at φ = 0. The rolling condition gives us a relation between φ and θ:(
dx

dθ

)2

+

(
dy

dθ

)2

= r2 =⇒ R2

(
dφ

dθ

)2

= r2 (6.51)

We therefore take φ = r
R(θ − θ0) where θ0 represents the orientation of the disk when it sits at

the lowest point in the circular curve (that is θ = θ0 when φ = 0). We therefore have

x(θ) = R sin
( r
R

(θ − θ0)
)
, y(θ) = R−R cos

( r
R

(θ − θ0)
)

(6.52)

so that
(
x(θ0), y(θ0)

)
= (0, 0). It is now easy to find the angle of the curve as a function of θ:

α(θ) = arctan

(
y′(θ)

x′(θ)

)
= φ =

r

R
(θ − θ0) =⇒ α′(θ) =

r

R
(6.53)

We can now write down the equation of motion:((
I3 +m |s(θ)|2

)(
1− r

R

)
θ̈
)

= −mrl
(

1− r

R

)
θ̇2 sin θ

−mg
(
r
(

1− r

R

)
sin
( r
R

(θ − θ0)
)

+ l
(

1− r

R

)
sin
(
θ − r

R
(θ − θ0)

))
(6.54)

Noticing that if we set l = 0 then |s(θ)|2 = r2 so that the motion equation becomes

(I3 +mr2)
(

1− r

R

)2
θ̈ = −mgr

(
1− r

R

)
sin
( r
R

(θ − θ0)
)

(6.55)

We recognise this to be the equation for the planar pendulum! So the symmetric disk rolling in
a large cylinder has the same motion as a pendulum, irrespective of the radius of the cylinder!
Such a beautiful result!!! To look at this in more detail we write the equation in terms of
φ = r

R(θ − θ0) so that θ̈ = R
r φ̈(
I3 +mr2

) (
1− r

R

) R
r
φ̈ = −mgr sinφ (6.56)
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A solid disk of mass m, radius r with radially symmetric density has moment of inertia I3 =
kmr2[27] where 0 ≤ k ≤ 1. k = 0 represents a point mass and k = 1 represents a ring of radius
r. The motion equations now become

φ̈ = − g

(k + 1)(R− r)
sinφ (6.57)

Here we now realise that the centre of mass is a distance (R − r) from the centre of the circle
and its position is determined by angle φ. Therefore the centre of the disk moves just like a
pendulum in a gravitational field of strength g

k+1 . When k = 0, a point mass with no inertia, we
return to the regular pendulum. The most common case would be for a uniform disk (k = 0.5).
Then the motion of the centre of mass is equivalent to the motion of a pendulum of length R−r
in a gravitational field of strength gc = 2

3g.
Alternatively, for a physical comparison, consider a pendulum of length L = (k+ 1)(R− r).

If we put this next to the symmetric disk rolling inside a circle their motion should be equivalent
in terms of period and angle.

Remark If a disk in a circle is a planar pendulum then surely a ball rolling inside a large,
hollow sphere is the spherical pendulum. Proving this would be an interesting direction for
some further work.

�
The following question arose during discussions with my supervisor: If the symmetric disk

rolling in a circle is a pendulum, would a symmetric disk rolling in a parabola be a harmonic
oscillator? It seemed to be entirely possible.

Imagine a particle, under the influence of gravity, sliding without friction in a parabola.
Then the potential energy is V = mgz = mgx2 where z is the height of the particle. Then
Newton’s equations of motion give

ẍ = −1

2
mgx

It is a motion equation of the type ẍ = −kx which is the definition of Simple Harmonic Motion
(SHM).

Remark It is the x position of the point of contact which we would want to follow SHM. I
tried to put the parabolic curve into the equations of motion for the disk and transformed to
the equation of motion for the x position of the point of contact. However, I did not arrive at
anything close to simple harmonic motion. I then realised the reason that this breaks down:
The center of mass does not follow the path of a parabola! While the point of contact does
follow a parabola, the center of mass follows a path parallel to a parabola, which is therefore
not a parabola! When the disk rolls in a circle, both the center of mass and the the point of
contact follow a circular path.

It must be noted that there could still exist a curve such that when rolled in this curve we
get simple harmonic motion for x position of the center of mass. A worthwhile try would be
the curve such that the center of mass does follow the path of a parabola. The equation of the
curve a distance r from a parabola y = 1

2kx
2 is given by:

x̃ = x± rkx√
1 + k2x2

, ỹ =
1

2
kx2 ∓ r√

1 + k2x2
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Figure 6.9: If an asymmetric disk sits vertically with its center of mass
downwards on top of circular curve, it will sometimes be unstable and
sometimes be stable, depending on the radius of the curve on which it
sits.

As found on Wolfram Mathworld [24]. So if the centre of the disk follows a parabola y = 1
2kx

2,
the point of contact will have position (x̃, ỹ) defined by the equations above. Further work must
be done to see if this curve will generate SHM.

�

6.4 Stability on Top of a Circle

Suppose we place an unbalanced (l > 0) disk on top of a cylinder of radius R so that the centre
of mass is at the bottom (see figure 6.9). Clearly, if the disk is placed on a flat surface (R =∞),
it would be in a stable equilibrium. However if the disk were on top of a point (R = 0) it would
be in unstable equilibrium. Therefore there must exist a critical radius of the cylinder Rc such
that the equilibrium switches from stable (R > Rc) to unstable (R < Rc). Let’s find it!

The curve is defined by

x(θ) = R sin
( r
R
θ
)
, y(θ) = R cos

( r
R
θ
)
−R, α(θ) = arctan

(
y′(θ)

x′(θ)

)
= − r

R
θ (6.58)

The key to working out the stability is to look at the potential energy. This is

V (θ) = y(θ) + r cosα− l cos(θ − α)

= R cos
( r
R
θ
)
−R+ r cos

(
− r
R
θ
)
− l cos

((
1 +

r

R

)
θ
)

(6.59)

There is clearly a maximum or minimum at θ = 0 (simple check that V ′(0) = 0). To find
out whether this is a maximum (unstable) or a minimum (stable) we must look at the second
derivative.

V ′(θ) = −r
(

1 +
r

R

)
sin
( r
R
θ
)

+ l
(

1 +
r

R

)
sin
((

1 +
r

R

)
θ
)

(6.60)

V ′′(θ) = − r
2

R2
(R+ r) cos

( r
R
θ
)

+
l

R2
(R+ r)2 cos

((
1 +

r

R

)
θ
)

(6.61)

The equilibrium is therefore unstable if V ′′(0) < 0 (maximum) and stable if V ′′(0) > 0 (mini-
mum). We therefore define the critical radius Rc to be when V ′′(0) = 0. This is as simple as
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Figure 6.10: Two vertical disks on a horizontal plane are joined by a
light inextensible rod connected to the centers of the disks.

solving a linear equation. We get:

− r
2

R2
c

(Rc + r) +
l

R2
c

(Rc + r)2 = 0 =⇒ Rc =
r(r − l)

l
(6.62)

6.5 Two Coupled Rollers

Suppose we have two disks rolling on a horizontal plane with Lagrangians

Li(θi, θ̇i) =
1

2
kiθ̇i

2
+

1

2
mi |si(θi)|2 θ̇i

2
+migli cos θi, i = 1, 2 (6.63)

We impose the constraint that the centres of the disks are joined together by a light inextensible
rod of length L, somewhat like a bicycle or car would have two axles rigidly joined together (see
figure 6.10). Since they are rolling on a flat surface this constraint is equivalent to saying that
the distance rolled by each of the disks is the same. The length of the rod will have no effect on
the motion. The constraint is written as:

r1

(
θ1 − θ1(0)

)
= r2

(
θ2 − θ2(0)

)
We could impose this constraint using a Lagrange multiplier:

L(θ1, θ̇1, θ2, θ2) = L1(θ1, θ̇1) + L2(θ2, θ̇2) + µ
(
r1

(
θ1 − θ1(0)

)
− r2

(
θ2 − θ2(0)

))
(6.64)

However, the constraint is simple and it is much easier to use the following one-dimensional
reduced Lagrangian for the first disk and then reconstruct the solution for the second disk:

L(θ1, θ̇1) = L1(θ1, θ̇1) + L2

(
r1

r2

(
θ1 − θ1(0)

)
+ θ2(0),

r1

r2
θ̇1

)
(6.65)

where we have simply used the constraint to write θ2 in terms of θ1 and substituted this into
L2. This works because the constraint is simple and linear. Once we solve this to find θ1(t) we
simply reconstruct θ2(t) using

θ2(t) =
r1

r2

(
θ1(t)− θ1(0)

)
+ θ2(0)

32



J. Jachnik Spinning and Rolling of an Unbalanced Disk CID: 00512067

(a) 180◦ out of phase (b) 198◦ out of phase

Figure 6.11: An asymmetric disk of mass m1 = 3 is rolling in the
plane in a periodic motion. Another disk of the same radius, same mass
distribution but different total mass m2 is joined to its center via a light
inextensible rod. They both roll on the plane in a periodic motion. The
graphs above show the orientation of the first disk with various values
of m2. In (a) the disks are totally out of phase and as a consequence,
the amplitude of oscillation remains the same with the addition of the
second disk. When m2 < m1 the period of the oscillation increases as
m2 increases. If m2 > m1 then the second disk becomes the dominant
driving force and the first disk rolls in the other direction. The period
of the oscillation now decreases with an increases of m2. In (b) the
disks are slightly out of phase and, as a consequence, the amplitude of
oscillation changes.

Figure 6.12: Two vertical disks rolling in the bottom of a circle are
joined by a light inextensible rod connected to the centers of the disks.
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6.6 Two Disks Rolling in the Bottom of a Large Circle

Imagine now that our 2 connected disks are rolling in the bottom of a large circle (see figure
6.12). The Lagrangian for each disk is given by

Li(θi, θ̇i) =
1

2
kiθ̇

2
i +

1

2
mi |si(θi)|2 θ̇2

i −mig
(
y(θi) + ri cosαi − li cos(θi + αi)

)
(6.66)

The curve on which they are rolling is defined by

x(θi) = R sin
(ri
R

(θi − θi(0))
)

(6.67)

y(θi) = R−R cos
(ri
R

(θi − θi(0))
)

(6.68)

α(θi) = arctan

(
y′(θi)

x′(θi)

)
=
ri
R

(θi − θi(0)) (6.69)

The constraint we want to impose is that the distance between the centres of the disks is constant.
The position of the centre of disk i is

Xi =

(
Xi

Yi

)
=

(
(R− ri) sinαi

R− (R− ri) cosαi

)
(6.70)

We impose the constraint that |X1 −X2|2 = Υ2 is constant. Expanding this norm we get

(R− r1)2 + (R− r2)2 − 2(R− r1)(R− r2) cos(α1 − α2) = Υ2 (6.71)

So for this to be satisfied we require α1 − α2 = ω to be a constant. If we are given the distance
between the centres, Υ, then

ω = α1 − α2 = arccos

[
(R− r1)2 + (R− r2)2 −Υ2

2(R− r1)(R− r2)

]
(6.72)

We notice that this is just a simple linear constraint between θ1 and θ2. We can therefore use
the same method as for rolling on a flat surface. We write θ2(t) in terms of θ1(t):

θ2

(
θ1(t)

)
=
r1

r2

(
θ1(t)− θ1(0)

)
− ωR

r2
+ θ2(0) (6.73)

We then write down the reduced Lagrangian for θ1(t):

L(θ1, θ̇1) = L1(θ1, θ̇1) + L2

(
θ2

(
θ1(t)

)
,
d

dt
θ2

(
θ1(t)

))
(6.74)

We can then solve this one-dimensional system from the Euler-Lagrange equations to obtain
θ1(t) and use (6.73) to reconstruct the equation for θ2(t).

Figure 6.13 shows an example of a large symmetric disk with a small asymmetric disk at-
tached to it. We see how the motion of the first disk, which would normally be a pendulum on
it’s own, is affected by the increase of mass of the second smaller disk. The amplitude of the
oscillations is reduced while the over all period is increased. The fact that the second disk is
smaller and is asymmetric means that the overall oscillations become wavy, which corresponds
to the phase of the second disk.
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Figure 6.13: A symmetric disk of radius r1 = 2 and mass m1 = 2
rolls in the bottom of a circle of radius R = 10 under the influence of
gravity. A second, asymmetric disk of mass m2 and radius r2 = 0.5 is
attached to the first disk via a rod of length 3 joining their centres. The
graph shows how the motion of the first disk is affected by the addition
of the second disk for different masses. When m2 = 0 the disk rolls like
a pendulum.
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Remark The problem of coupled disks rolling on a general curved surface is a very difficult
one. There would no longer be a simple linear relation between the orientations of the disks.
Even writing down the equations of motion is probably a very difficult task. The place to start
would be to implement the constraint via a Lagrange multiplier:

L(θ1, θ̇1, θ2, θ̇2) = L1(θ1, θ̇1) + L2(θ2, θ̇2) + µ
(
|X1(θ1)−X2(θ2)|2 −Υ2

)
�

7 Regular Motion

When we spin Euler’s disk we don’t actually see most of the possible motions which are allowed
by the equations of motion. This is because, in our non-ideal world, there is slippage (see [17]).
If we observe the real-life motion of the symmetric disk we see that the point of contact seems
to draw out a circle and the angle of the disk to the horizontal appears constant (until the disk
loses energy due to vibrations and slippage). Therefore it makes sense to analyse this particular
situation. In this case the potential energy stays constant. This analysis is done in papers such
as [17]. However, that paper uses Euler angles so can simply set θ(t) = θ0. To implement
this constraint on the Geometric form of the equations we use Lagrange Multipliers. The new
constrained Lagrangian becomes

S =

∫
L(Ω,Y ,Γ) + µ (s · Γ− s0 · Γ0) dt (7.1)

where µ is the Lagrange multiplier. The new equations of motion become:(
d

dt
+ Ω×

)(
IΩ +ms× (Ω× s)

)
= (µ−mg)s× Γ +ms× (Ω× s) (7.2)

After a bit or rearrangement we get:

(µ−mg)s× Γ =

(
d

dt
+ Ω×

)
IΩ +ms× (Ω̇× s+ Ω× ṡ) +mΩ×

(
s× (Ω× s)

)
(7.3)

The next challenge is to find the value of the Lagrange multiplier. We use the spherical pendulum
problem, with the constraint of constant length, as an analogous situation. To find the Lagrange
multiplier of the spherical pendulum we use the constraint and it’s first and second derivatives.
To find the value of the Lagrange multiplier for the rolling disk we take the inner product of the
above equation with s×Γ to make it into a scalar equation and then substitute in the constraint
and it’s first 2 derivatives. These are:

s(t) · Γ(t) = s0 · Γ0 (7.4)

s · Γ̇ = s · Γ×Ω = 0 (7.5)

ṡ · Γ×Ω + s · Γ̇×Ω + s · Γ× Ω̇ = 0 (7.6)

where, in the second equation, we use the fact that ṡ · Γ = 0. We now need to take the inner
product of each element of (7.3) with s× Γ:

Ω×
(
s× (Ω× s)

)
· (s× Γ) = s2(s ·Ω)Ω · Γ− (s ·Ω)2s0 · Γ0

s× (Ω× ṡ) · (s× Γ) = (s · ṡ)Ω · s× Γ− (s ·Ω)ṡ · s× Γ = −(s ·Ω)ṡ · s× Γ

s× (Ω̇× s) · (s× Γ) = s2Ω̇ · s× Γ = s2
(
Ω× Γ̇ · s+ Ω× Γ · ṡ

)
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Figure 7.1: Plot showing the oscillation of the angular velocity about
the axis perpendicular to the disk (unbalanced disk only). This is one of
the key visual differences noticed when comparing the unbalanced disk to
the symmetric disk.

The first equation uses the constraint, the second equation uses the first derivative of the con-
straint and the last equation uses the second derivative of the constraint. We can now combine
this to find an equation for the Lagrange multiplier:

(
s2 − (s0 · Γ0)2

)
(µ−mg) = (s× Γ) ·

(
d

dt
+ Ω×

)
IΩ +m(s ·Ω)s2Ω · Γ− (s ·Ω)2s0 · Γ0

−m(s ·Ω)ṡ · s× Γ +ms2
(
Ω× Γ̇ · s+ Ω× Γ · ṡ

)
(7.7)

Not a very nice expression but it embeds all the information about the constraint and its
derivatives.

We integrate the equations numerically (as discussed in section 10) and we see that for the
symmetric disk the path of the point of contact becomes a circle, consistent with [17]. The path
of the point of contact for the asymmetric disk is very different and some examples can be seen
in figure 7.2.

An interesting feature of the asymmetric disk under regular motion is that the E3 component
of the body angular velocity oscillates (see figure 7.1). This is one of the first visual differences
we noticed when spinning the asymmetric Euler disk and comparing it to the symmetric Euler
disk. We have managed to show its presence numerically from the equations of motion. Success!
In the symmetric case this angular velocity stays constant under regular motion.

7.1 Constraint via Penalty Functions

It is also possible to use a method called penalty functions to apply a more relaxed version of
the constraint. With Lagrange multipliers the motion is restricted to the constraint distribution.
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(a) (b) (c)

Figure 7.2: The path of the point of contact for regular motion of
the asymmetric disk with varying initial conditions. There is a clear
divergence from the circular path drawn out by the symmetric disk. The
paths do exhibit some symmetries which suggests that periodic motions
could occur for certain initial conditions.

With penalty functions the motion is allowed to deviate from the constraint distribution but is
penalised for doing so in a way that tries to bring the motion back to the constraint distribution.
We put the square of the constraint (always positive) into the Lagrangian and instead of using a
Lagrange multiplier we multiply it by a large constant. Then when we try to minimise/maximise
the action functional in Hamilton’s principle, the large coefficient to the constraint means that
the motion must stay close to the constraint distribution. So the constraint is almost satisfied.

Here is a simple example: Suppose we have a Lagrangian L
(
q(t), q̇(t)

)
and we want to

implement the constraint f(q) = 0 by penalty functions, then we look at stationarity of the
action functional:

S =

∫ b

a
Lc
(
q(t), q̇(t)

)
dt =

∫ b

a
L
(
q(t), q̇(t)

)
± 1

2ε2
|f(q)|2 dt (7.8)

where ε ∈ R is small. Notice that we use the norm |·|2. This is because f(q), in general, may
not be a scalar valued function so that |·|2 becomes a positive definite non-degenerate metric.
The choice of sign depends on whether the action is being maximised or minimised.

In the case of the disk, our constraint is s · Γ − s0 · Γ0 = 0. If we put this into the action
functional using penalty functions we get

S =

∫
1

2
Ω · IΩ +

m

2
|Y |2 −mgs · Γ− m

2ε2
(s · Γ− s0 · Γ0)2 dt (7.9)

We now take variations like we did before to obtain the equations of motion. The only term
which changes from the original equations is κ = ∂Lc/∂Γ. It becomes

κ =
∂Lc
∂Γ

= −mgs− m

ε2
(s · Γ− s0 · Γ0) s

= −m
(
g +

1

ε2
(s · Γ− s0 · Γ0)

)
s (7.10)
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(a) No Penalty (b) ε = 0.5 (c) ε = 0.2 (d) ε = 0.1

Figure 7.3: The path of the point of contact of a symmetric disk with
different levels of penalty. As we increase the penalty (decrease ε) the
path tends towards a circle, characteristic of regular motion.

So the penalty acts like a rescaling of the gravitational field when the height of the centre of
mass deviates from the initial height. If the COM goes higher than the starting height then the
effective gravitational field increases to pull it back down. If the COM goes lower, the effective
gravity decreases.

The new equations of motion are:(
d

dt
+ Ω×

)(
IΩ+ms× (Ω×s)

)
= −m

(
g +

1

ε2
(s · Γ− s0 · Γ0)

)
s×Γ+mṡ× (Ω×s) (7.11)

Figures 7.3 and 7.4 demonstrate the effect of the penalty on the path of the point of contact
for the symmetric and asymmetric disk respectively. The motion of the symmetric disk is fairly
conservative anyway so the penalty does not need to be that high to bring the disk back to a
circular, regular motion. The motion of the unconstrained asymmetric disk is extremely erratic
as can be seen in figure 7.4a. This motion is so chaotic that we even start to see the effect of the
discretisation in the plots where the disk is moving very fast and the curve is no longer smooth.
The asymmetric disk requires a very strict penalty to bring the motion back to something similar
to regular motion.

8 Approach to Flat

When we observe the symmetric Euler’s disk we see that the rate at which the point of contact
rotates, or wobble frequency, increases as the disk gets closer to the flat. In this section I will
try and reach some kind of description of the rate at which this happens. Many papers have
analysed the approach to flat as a function of time but I will look at how the wobbling frequency
depends on the angle of the disk to the horizontal.

In reality the disk loses energy due to slipping and vibration which is why the disk eventually
gets lower and finally stops. Here we will assume that any energy loss is taken from the potential
energy only. As we mentioned earlier, the physical motion is approximately the regular motion
when the potential energy remains constant so this makes sense. Therefore we analyse the
approach to flat by solving the equations with the same initial kinetic energy but changing the
initial angle. I define the wobbling frequency by the inverse of the time taken for the point
of contact to draw out one closed circle under regular motion. Figure 8.1 shows the results of
this exercise. They tell us that the wobbling frequency increases like the inverse of the angle.
This agrees with what we observed physically as the disk’s wobble frequency can be heard to
approach a singularity as the angle of the disk to the horizontal tends to zero.
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(a) No Penalty (b) ε = 0.3 (c) ε = 0.1

(d) ε = 0.05 (e) ε = 0.01 (f) Regular Motion

Figure 7.4: The path of the point of contact for the asymmetric disk
with various levels of penalty. As demonstrated by (a) the behaviour
of the asymmetric disk without the constraint of constant potential en-
ergy is extremely erratic. (b)-(e) show us how, with different levels of
penalty, the constraint tries to force the disk to a more regular, more
physical motion. The level of penalty required is much higher than for
the symmetric disk to get motion which is even similar to pure regular
motion.
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(a) (b)

Figure 8.1: As the angle of the symmetric disk is lowered, the wobbling
frequency increases like 1

angle
, as shown in (a). (b) shows the ln graph

of the same quantities to show that the relation gives a straight line.

Remark Analysis of the wobbling frequency for the unbalanced disk would be much harder to
determine. If the path of the point of contact is not periodic then how would we define one
wobble of the disk? This is an interesting area for some further work.

�

9 Spinning Cylinder

The standard model for Euler’s disk is for an infinitely flat disk. That is, we assume that the
centre of mass is in the (E1,E2) plane and when the disk lies flat, the (E1,E2) plane coincides
with the (e1, e2) plane in the spatial coordinates. Obviously a real disk has a physical height
and the centre of mass will not be in the (E1,E2) plane as in the model.

This opens up the problem to a new class of physical objects: spinning cylinders. One such
example of this is a frozen can of tuna. In fact, the frozen can of tuna gives a really good
demonstration of the type of motion exhibited by Euler’s disk. If you don’t have an Euler’s disk
try putting a can of tuna in the freezer. The best are the cans with a rounded edge. It will give
you an idea of how Euler’s disk spins. It doesn’t spin for > 2 minutes like Euler’s disk but it is
still interesting to play with.

Another key example is that empty pint glass which you knock in the bar and it starts rolling
around on its edge. In this case the centre of mass is well out of the plane and the dynamics
are very different. There is an analogy to having a broom balancing on your hand. If it is just a
broom stick, it is very hard to balance. If the head of the broom is up in the air it makes it a lot
easier to balance due to the higher inertia. This is a similar case with the glass. This is observed
when sometimes you knock the glass and it will roll on its edge at a relatively slow rate for a
surprisingly long time and it doesn’t fall over. This happens when the initial velocity and spin
of the glass is such that the glass is very close to falling over, but not quite there. The center
of mass is almost above the point of contact and so the torque on the glass is low. This motion
occurs with the spinning cylinder because the angle of the cylinder to the horizontal does not
need to be to large to get the center of mass above the point of contact.
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Luckily we have already formulated the equations for a centre of mass not in the plane in the
equations for the flat disk with an off-centre COM. Recall that χ is the vector from the centre
of symmetry to the centre of mass. Instead of χ being restricted to the (E1,E2) plane we can
open it up to have an E3 component as well. We note that the centre of symmetry from which
χ originates is the centre of the circular base of the cylinder.

We will look at the simple case where the cylinder’s mass distribution is entirely symmetric
so that χ = E3. This should be a better model for the real Euler’s disk. Consider a symmetric
cylinder of height 2l so that the distance from the centre of the base to the COM is l.

Figure 9.1 shows the change in the path of the point of contact as we pull the center of mass
out of the plane. We assume the cylinder is of uniform density and adjust the inertia tensor
accordingly. The overall mass, radius (r = 2) and initial conditions all remain the same. The
key thing to notice is that these diagrams are all drawn over the same time period 0 ≤ t ≤ 15.
We notice how, as the center of mass comes out of the plane, the number of rotations of the
point of contact reduces. This is the effect I mentioned earlier with the pint glass. The cylinder
can remain just balanced on its edge and roll slowly for a surprisingly long time since the center
of mass is nearly above the point of contact. Here it is demonstrated by the numerics. If I
increase the height of the center of mass to l = 4 then the cylinder falls over. The actual shape
of the path travelled by the point of contact also changes slightly but this is not a significant
effect. Figures 9.1a and 9.1b may look very different from the rest but this is simply because
the motion here is approximately periodic. The path of the other diagrams are in fact the same
overall shape but the phase is changing.

The motion of the disk isn’t affected drastically for small l but the change from l = 0 to
l = 0.1 is enough to make us wonder if the flat disk model for Euler’s disk is in fact that accurate.
More work would need to be done in this area to determine the accuracy of the flat disk model
to a nearly flat physical disk.

An interesting observation was that, under regular motion, the frequency of the wobble
remained constant as we moved the center of mass out of the plane. We then realised that
this regular motion of the disk is not a good model for a cylinder since it would never allow
the cylinder to fall over! Even if we increase l so the cylinder becomes very tall and thin, it
draws out a perfect circle with the same wobbling frequency as if the cylinder were flat. Clearly
non-physical, the cylinder should fall over.

10 Solving the Full System Numerically

For all the numerics we used Maple’s dsolve command which uses Fehlberg fourth-fifth order
Runge-Kutta method. Using MATLAB or C might have been faster, but the complexity of
the equations was an obstacle to their conversion to a first order system for use in a general
integrator. Maple has the ability to do this conversion for you so it seemed like the easiest
way. Maple is able to convert the system to first order and then print it out for use in other
applications. We did get Maple to do this for the symmetric case but the equations took up 3
pages and it seemed like a pointless exercise to try and program them into MATLAB or C. This
is where the Euler angle formulation has its advantages: it is easier to decompose into a first
order system and integrate numerically.

We were able to check that we were getting good accuracy by checking that the energy stayed
constant. In most cases we were able to get 8 or more significant figures of accuracy so we are
confident in the results.
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(a) l = 0 (b) l = 0.01 (c) l = 0.1 (d) l = 0.5

(e) l = 1 (f) l = 2 (g) l = 3 (h) l = 3.7

Figure 9.1: Plots showing the variation in the position of the point of
contact as we move the centre of mass out of the plane, for the same
initial conditions and same time period. The number of rotations the
point of contact make reduces as l increases.

The unbalanced disk was hard to get decent numerical results for due to highly erratic
behaviour, areas of very slow motion combined with areas of very fast motion, although these
were clearly non-physical. The regular motion of the asymmetric disk took especially long
to calculate. Maple’s interface has quite a few bugs and we had many problems with Maple
not being able to solve the problem one day but it could the next! This is something I have
experienced before with Maple. It is very temperamental.

To deal with the erratic behaviour exhibited by the asymmetric disk, the key was to choose
initial conditions that were as physical as possible. This involved quite a bit of trial and error
but it worked out in the end and gave results which were much more meaningful.

For the 2D motion, the system was simple and we had no problems integrating and plotting
any solutions to these problems. We have used Maple to make some simple animations of some
of the 2D motions which can be seen on the attached CD of supplementary material. There are
also animations which draw out the path of the point of contact for the asymmetric disk under
regular motion. The CD also includes all of my Maple code as well as a PDF version of this
document.

11 Conclusion

In this paper we have taken the well-known problem of the spinning symmetric disk and thrown
it off balance. In reality the unbalanced disk exhibits different motions than the symmetric disk
and we were able to show these with the mathematics. We invented a way to analyse the regular
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motion of the disk using this Geometric form of the equations. Previously this regular motion
had only been analysed in Euler angles and only for a symmetric disk.

We included an overview of nonholonomic constraints. This was important to make the
reader fully understand why we need to be extra cautious with the constraint and why standard
Lagrangian mechanics methods (Hamilton’s principle) cannot be used. We demonstrated what
happens when we don’t respect the constraint and obtain the wrong equations of motion. This
is important for mathematicians since it is hard to believe what is said without some kind of
evidence to back it up!

We were able to study extensively the 2D motions of the disk rolling on a given surface with
some of the results turning out to be very elegant, something very satisfying to a mathematician.
The equations also provided insight into motions which are not possible to analyse by simple
observation. For example, the vertical disk rolling back and forth on a horizontal plane may be
thought to be similar to a pendulum or simple harmonic motion. We were able to show this is
not the case.

This project is by no means a complete analysis of the motions of the unbalanced disk. There
are many areas where we would like to do some further work:

• Work on a symmetric ball rolling inside a sphere is a must and it would be excellent to
prove (or disprove) that it is equivalent to the spherical pendulum.

• Further work could also be to analyse the phase of the disk. After a single wobble of the
regular motion the disk will have rotated slightly. This represents a phase. Analysis of
this for the symmetric case and then how it evolves as the disk becomes unbalanced would
be very interesting.

• We would also like to find the equations of motion for two coupled rollers on an arbitrary
surface. We could even expand this problem to n-rollers. It would be interesting to see if
this same type of analysis could be used on other rolling bodies such as ellipsoids or egg
shapes.

• One of the features of the asymmetric disk is that when it is vertical and spun very fast
about the vertical axis, the center of mass rises and falls as it spins. In this situation the
no-slip condition is not satisfied and we believe it to be a similar type of motion to the
inverting of a spinning egg or a tippe top[6]. Some description of how/why this happens
would be very satisfying.

This project has shown how geometric mechanics rather than more traditional methods can
provide a more tractable solution to a complex problem. Given the power of this approach it
would be interesting to see more numerical tools made available to solve the type of equations
obtained via this method. This would provide an extremely powerful tool-kit for solving the
problem of the unbalanced disk and other similar problems.
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